
INVESTIGATION OF THE TEMPERATURE FIELDS IN STRUCTURAL 

STEELS TAKING STRUCTURAL AND PHASE TRANSFORMATIONS INTO 

ACCOUNT 

V. F. Zakharenkov, Yu. A. Petrenko, 
V. I. Tyukaev, and N. L. Yadrevskaya 

UDC 536.24.02 

The article presents the solution of the heat-transfer equation in a metal wall 
subjected to pulsed thermal effect, taking into account the dynamics of a number 
of structural and phase transformations, both in heating and cooling. 

The numerous investigations dealing with the calculation of temperature fields in steels 
contained inthe literatureare basedon thehomogeneity of the materialsand onthe thermophysicai 
characteristics of the material being independent of the current structure and phase state. 
On the other hand, in the practical operation of various products made of high-strength alloy 
steels, conditions may arise when structural and phase changes occur in the steel under the 
effect of high temperatures, and these are accompanied by a transformation of the structure 
~ccording to the scheme initial u-phase of the steel (sorbite) --7-phase (austenite), phase 
and thermal effects including the formation of a molten film entailing additional heat ab- 
sorption. When the thermal load is removed and the material rapidly cooled, the high-tem- 
perature 7-phase is supercooled to temperatures of martensitic transformation (7-phase-- 
hardened u-phase). The process may be complicated by cyclic application (removal) of the 
thermal load, and consequently by cyclic phase and temperature strains; this is one of the 
causes why a network of fatigue cracks appears in the surface layers of the metal [i]. 

To provide a correct understanding of the processes occurring during heating and cooling 
of steel, and to devise a mathematical model of carrying out thermal calculations, we will 
deal with the characteristic of zones which may originate in steel exposed to cyclic heating 
and cooling. 

In heating (Fig. i) we can distinguish the following zones: of melt (ZM), of metal 
with austenitic structure (ZA), of austenitic transformation (ZAT), and of metal with the 
initial structure (IM). In cooling, the metal (Fig. i) in zones containing austenite is 
subjected to martensitic transformation, and a quenched zone (ZQ) forms. 

The zone of melt is characterized by the absence of crystalline bonds in the structure 
of the metal. In it, an amount of heat equivalent to the temperature of the intercrystalline 
bonds of the lattice of the metal is absorbed. Depending on the actual conditions of heating, 
the forming molten film may either be retained on the surface of the metal, it may run off 
freely under the effect of mass forces, or it may flow and disintegrate under the effect 
of external distorting forces. 

The ZA is metal in which the processes of austenitic transformation have been brought 
to full completion. The thermophysical characteristics (TPC) of the steel in this layer 
depend only on the temperature. 

The ZAT is characterized by processes of rearrangement of the structure of the steel 
throughout the thickness of the material. Here the TPC and the temperature of the phase 
transformation depend on the temperature and degree of transformation of the initial struc- 
ture into austenitic structure, and they change from the values at the boundary of IM with 
ZAT to the values at the boundary of ZAT and ZA. The degree of transformation ~ is determined 
by the fraction of the elementary volume of the material in which transformation has occurred 
by the instant in question. 

Leningrad Mechanical Institute. A. V. Lykov Institute of Heat and Mass Exchange, Acad- 
emy of Sciences of the BSSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 
38, No. 5, pp. 894-902, May, 1980. Original article submitted May 14, 1979. 

566 0022-0841/80/3805-0566507.50 �9 1980 Plenum Publishing Corporation 



Heating 
oc 6 T~ 

R! 

r 

~N 

K+I 

N,(I~ ) 

K 
K - !  

% 

~6 T~ 

Rz 

r r  ": 
b.'r162162162 
r ~ x \ x  x ~ x l  

L X X X ~ L ~  

R'~' ~" . . . . . .  

1 

A 

Coo ling 

1 

Rf ~M 

ti 

I J 

\ \ \ - -a l[i--b ~ -- c /// --d 

t 

Fig. i. Diagram of the structure and phase trans- 
formations in steel: a) initial structure (IM); 
b) austenitic (ZA); c) quenched (QM); d) melt (ZM). 

The zone IM is characterized by regularities of heat propagation that are analogous to 
those in materials without structure and phase transformations. In this case, the TPC are 
functions of the temperature only. 

As heating of the material proceeds, all the different kinds of zone form in the metal 
and gradually change from one into the other. 

When steel is cooled to below the temperature of incipient martensitic transformation 
T~, a zone of quenched structures forms in the zones ZA and ZAT. In the layer, which during 

heating was the zone ZA, there are austenitic and martensitic structures, and in the ZAT 
there is the initial structure, austenite, and martensite forming in the austenitic region. 
The processes of rearrangement of the zones occur continuously in time, and this leads to 
complex relationships of the TPC in them, and consequently also to the complex nature of 
the formation of the temperature field in a steel wall. 

We Will calculate the temperature fields in the zones with the aid of the following 
general equation of heat conduction: 

c (T, ~) p (T, n) aT_at - r ~1 aOr [~ (T, n) r~ OTor + ~ Qi (T, n) 6 (T-- T*), (1) 
i = t  

where m = 0, l, 2 is a flat wall, a hollow cylinder, and a hollow sphere, respectively; T* 
= T~ e in melting; T* = T~ in austenitic transformation. The function 

% 

1 for T~T*, 
6 ( T - - T * ) =  0 for T<T*.  
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The boundary conditions for solving Eq. (i) on the assumption that the molten film is 
instantaneously removed (~(T me -- T~ ) = 0) has the form 

T (r, 0) = To (r), ~ (r, 0) = ~o (r), (2)  

where Rx~r~Rz; Rx = R~ is a cylinder or sphere; Rx ffi 0 is a flat wall; R2 = Zo is a flat 
wall; 

the boundary conditions are 

aT = oL. (0 IT .  (t) - -  T (R~, t)] - -  Qme; --X(r, 0--7- 

h ( r )  O_/_._T = ~ ,  (t) [T (R~, t) - -  T,  (t.)]. 
Or 

(3) 

The values Q and Qme, characterizing heat sinks in the processes of bulk austenitic 
transformation and of frontal melting of the steel on the inner wall surface, respectively, 
a r e  c a l c u l a t e d  b y  t h e  d e p e n d e n c e s  

n 

= qfm ~ ; Qme-qrneP (Tme) vine (4) 

The melting rate Vme is determined from the speed with which the temperature T~ e pro- 

pagates into the bulk of the material. The assumption that the molten layer is instantly 
removed leads to the equations 

v,e = ~ (5)  
t t 

Rt = R~ + ~ Vr~ (t) at; t = t o -  ~" ore (t) at. 
o o (6) 

The thermophysical characteristics of the steel in different zones, necessary for solv- 
ing the problem, are determined in the following way. When steel is impulse-heated and 
subsequently rapidly cooled, nonequilibriumphases form in it and exist for some time. For 
instance, the initial a-phase overheated by IO0-300~ and the high-temperature y-phase 
supercooled by 800-900~ The great difference in the thermophysical properties of the pha- 
ses makes it impossible to use reference data because these refer to the equilibrium state 
of steel, and it would be necessary to establish the regularities of their change in each 
z o n e .  

The Zone IM. For steels with a not strain-hardened initial structure, the first point 
of phase equilibrium is the point of beginning austenitic transformation corresponding to 
the temperature T# = (0.5--0.?)T~?An analysis of the temperature dependences of the thermo- 
physical characteristics in this region [2-5] shows that for the equilibrium phases applies 

n 

p==a--bT;  c~=Ca+CM; ~ = ~ a i T " - ' ,  (7)  
i = 1  

w h e r e  n = 3; c a = at q- biT; cM = az q- exp ( - -  bJT). 

The thermal conductivity of the a-phase is characterized by its decrease with increas- 
ing temperature. 

When the a-phase is in a nonequilibrium state, the heat capacity c a can be obtained 
by calculation by the mixing formulas, and density and thermal conductivity by the linear 
extrapolation of the dependences that apply to the equilibrium u-phase. 

The Zone ZA. The equilibrium y-phase exists from the temperatures T~_ to T~ e. An 

analysis of the data on the thermophysical characteristics of steels in this temperature 
range shows that density, heat capacity, and thermal conductivity are linear functions of 
the temperature. When the y-phase is cooled to below the temperature of phase equilibrium 
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TABLE i. Densities (kg/m s) of the Equilibrium Phases of 
Steel, 0a = a--bT; 0y = A--BT 

Coe fficie nts 

a-phase 
a ,  kg/m s 
b .106, kg/m a. ~ 
- phase 
A, k g / m  3 

B .10~, kg/tn s.~ 

c o ~ ;  

7936 
340 

8126 
476 

7943 7954 
318 317 

8141 8169 
460 480 

Brand of Steel 

steel 35 [5] 
- 

E ened annealed 

7927 7895 7939 
340 300 360 

8089 8147 
450 510 

steel 35 [1] 

ened annealed 

7884 7952 
264 325 

8283 
527 

7966 
359 

8182 
506 

at rates exceeding the critical hardening rate [6], it may occur in the steel up to the 
temperature of the end of martensitic transformation. In such a nonequilibrium y-phase, 
density, heat capacity, and thermal conductivity of the material are determined analogously 
to the way it is done with the a-phase. A special feature of the nonequi!ibrium y-phase is 
the absence of a magnetic peak of heat capacity and the decrease in thermal conductivity upon 
cooling. 

The Zone ZAT. Density, heat capacity, and thermal conductivity in this zone depend on 
the temperature and degree of austenitic transformation of the metal ~, i.e., 

P(~+v)(T, ~ 1 ) = [  Pv~I(T) 4- P~I--N ] - ' , ( T )  

c(=+v) (T, ~1) = % (T)(1 - -  q) + cv(T ) q. 

(8) 

Proceeding from the peculiarities of the kinetics of austenite formation in steel, we 
can represent the metal in the form of a structure with closed inclusions of a-phase in the 
matrix of the forming y-phase. Then we can calculate the thermal conductivity of the mixture 
by Odelevskii's formula [7] 

X{~+v)=~v[I--(I--~)/(~v xv ~)] 
---g= 3 " (9) 

The data on the thermophysical characteristics of the a-phase and y-phase, necessary 
for the calculation, are presented in Table i. This table also contains the experimental 
values of the characteristics for steel 35KhN3MF. The investigations were carried out at 
the A. V. Lykov Institute of Heat and Mass Exchange, Academy of Sciences of the BSSR, on a 
high-temperature installation which, was described in detail by Shashkov and Tyukae~ [8]. 

The degree of austenitic transformation ~ m determined by the kinetic Arrhenius-type 
equation 

d~l~ = Ko (1 - -  q)" exp ( - -  EIRT). (10)  

The constants Ko, n, and E are individual characteristics of the steels, they depend on the 
composition of the steels and are determined experimentally. To calculate these constants, 
the Leningrad Mechanical Institute used a dilatometer type "tube in a tube" with electronic 
displacement sensor to heat and cool steel specimens, to record the change in length of the 
specimens, and to plot the dependences ~ = f(T, t). From these curves, the kinetic constants 
were determined on the basis of the condition of minimization of the discrepancy function 
type 

N 

j = l  
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Fig. 2. Change in the thermophysical character- 
" istics of steel 35KhN3MF in dependence on the 
temperature: 1, 6) a-phase; 2, 3, 7) y-phase; 
4, 5) hardening a-phase (4) rapid heating; 5) slow 
heating); 8) initial a-phase; a) heat capacity; b) 
thermal conductivity; c) density. T, OK; c, J/kg" 
OK; ~, W/m #" ~ 0, kg/m s. 

where J is t h e  number of experimental points (l~.j ~N). For steel 35Kh3MF the following 
constants were obtained: n = 1.68; E/R = 805,000; In Ko = 72. 

The temperatures of the phase transformations were taken from [9], the melting points 
are experimental results. For steel 35Kh3MF of average chemical composition, this value, 
obtained on the installation of the Institute of Heat and Mass Transfer, is close to the 
melting point of pure iron and amounted to qme = 271500 J/kg. The experiments were carried 
out at normal pressure in an argon atmosphere. Melting of the steel occurred in the tempera- 
ture interval 1720-1840=K. 

The Zone of Hardening. In continuous cooling, the martensitic transformation below the 
temperature T~ occurs both in the zone of austenitic transformation (ZAT) and in the zone of 
steel with th~ structure of the 7-phase (ZA). The available data [5, 6, 9] as well as dila- 
tometric investigations show that in the temperature range of martensitic transformation, 
the density and heat capacity of the initial structure and of the forming hardened a-phase 
are similar~ and that they therefore can be determined by formulas (7). The thermal conduc- 
tivity of the hardened structures of steel is substantially lower than the initial structures 
of high tempering. For carbon steels it may be accepted according to the data of [5, 9, i0] 
(Fig. 2). In the formation of martensite in steel in the zone ZA, the metal may be regarded 
as a two-phase structure with interpenetrating components since the martensite forms in the 
form of needles or platelets. For such structures, the following relationshSps [11] may be 
used: 

~<v+M) = ;~M [c z "% v (1 - -  c)Z-I - 2vc (1 - -  c)/('~c -]- 1 - -  c)l; 

= ~,y/~M; c = 0.5 + acos (~/3); 

3 
a = - - l ,  t p = - - a - l - a r c s i n ( l - - 2 m )  for mC{O;  0.5}; 

2 

3 
a =  1, q ~ = - - n - t - a r c s i n ( 2 m - - 1 )  for m E { 0 . 5 ;  1.0}; m = l - - ~ l .  

2 

( i l )  

When the martensitic transformation occurs in the zone of incomplete austenitic trans- 
formation, i.e., there is a mixture of three components in which martensite and austenite 
are the matrix with interpenetrating components, and the initial u-phase is a closed inclu- 
sion, the principle of successive reduction of the structures to the binary structume [ii] 
is applied. For instance, the thermal conductivity of such a mixture is determined by the 
formula 
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Fig. 3. Effect of impulse friction on the formation of the tem- 
perature field and the degree of transformation of the initial 
structure of the steel (pair Cu--Fe, t B = 10 -4 sec, To = 293~ 
T= = 1370*K): i) ~ = 2.02; 2) 0.5; 3) i; 4) envelope of the maxi- 
mum temperatures; 5) degree of transformation. 

Fig. 4. Effect of nonlinear (i) and partially linear (2-4) state- 
ments in solving the system of equations (1)-(12) on the maximum 
temperatures and depth of transformation: 2) without taking the 
structure-phase transformations into account; 3) TPC = TPC of the 
T-phase; TPC = eonst. 

L(~+nq-~) = L(M+v~ 1 - - ( 1 - - ~ / ) /  1 - - %  

where ~a = Xa/X (M;.-by) , and the thermal conductivity of the component X(M+y ) is determined by 
relationships (Ii) in which we have to put m = (n--~M)/~. 

The kinetics of martensitie transformation is diffusionless and is characterized by zero 
activation energy [6-10], therefore the relationship ~M = f(T) can be obtained directly from 
dilatometrle investigations. For steel 35KhN3MF at temperatures of 220, 380, 470, 500, 520, 
530, 540, 560, 570=K, the degree of transformation ~M is equal to 1.00, 0.93, 0.79, 0.68, 
0.58, 0.49, 0.35, 0.06, 0, respectively. 

The associated system of equations (1)-(2) was solved by the digital method of matching 
by regions [12]. The approximation of the equation of thermal conductivity and of the bound- 
ary conditions by the method of the implicit triangle was used. The approximating equations 
and the matching relationships have the form: 

Tt+i ~i+~ 
K--'=X~IK + y ~  ( K = 0 ,  1, 2 . . . . .  N); 

xo = ~ , ~ - , / 2  (2M_, /2  + ~l+lh)-~; 

hi 2 AN~(TI+,__T~ne);  Yo = 2=t+'Ti +'h ( 2 ~ i ] / =  + =*+ 'h)  - -  Q.rneP l+ '  (T~ he) T ~l-l-, 
i*~-- I /2  

C ,+I D,+i -- A,+Iy~ 
Xu+t = ; Yr~+i =-- , 

B~+t -1- A~+txu Bu+i q- Au+txu 

AH+I- (co)~+ 1 hZ 2hr~ 
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B.+, = -  + {r 

1 ( ~+~/2 m~+' ); 
h'- + 

Ti  I~+' ~"+' (1 s~+')n6(Ti +' T~); D.+, = ~ qfm (m)*+-~--i-"f~ - -  

t | 

Kf = Koexp(--E/RT); 11(t)= l - - [ l  + (n-- )) ~" Kfdt]"-'"; 
0 

t 

S Kfdt ----- z-L Ko [exp (-- E/RT~ l) + exp(-- EIRT~)]. 
o 2 

For the subregion I, a = am; h = h,; T, ffi T~; N = N,. For the subregion 2, a = aB; h = h2; 
T, = TH; N = Ns. The condition of conjugation of the subreglons is the following: 

~,'~t+~ = T~2 = ~N,-l/2ht YtA + ,,~,-~/2h____~ b9r ,~:~,-1/2/~ (1 - -  xN,)+ N,-,/~hi (1--X:A) . 

The problem was realized in the form of an ALGOL program for a BESM-6 computer. The 
step along the coordinate h and time T was selected by the method of successive approxima- 
tions. The specified convergence of the solution (E = 0.001) was attained in dependence 
on the conditions of heating with h - (0.1-5) �9 i0-" m and T ffi (0.001-0.01)tB, where t B is 
the ~otal heating time. As an example, Figs. 3 and 4 show the results of the calculation 
of a metallic cylindrical wall with boundary conditions corresponding to the third and first 
kind, respectively. Figure 4 shows the maximum temperatures in the surface layer for a number 
of theoretical cases. The obtained theoretical data on the depths of the zones of phase 
transformations agree with the experimental values determined on microsections [13]. 

NOTATION 

t, Y = t/tB, time; T, time step; h, step along the coordinate; T*, critical temperature; 
T, current temperature; ~, degree of transformation; r, longitudinal coordinate; R,, Ra, inner 
and outer radius, respectively, of a hollow cylinder (sphere); Z, thickness of the platelet; 
l, thermal conductivity; a, heat-transfer coefficient; Q, internal heat sources (sinks); p, 
density of steel; Vme , melting rate; c, heat capacity; Ko, preexponent; n, order of the re- 
action; Kfm , coefficient of the transformation rate; E, activation energy; R, universal gas 
constant; x, y, matching coefficients. Subscripts: M, martenslte; A, austenite; ~, critical 
value; a, a-phase; 7, y-phase; 0, initial value; ~, B, inner or outer parameters; K, coor- 
dinate index;Z, time index; i, number of iterations; me, melting. 
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VARIATIONAL METHOD OF CRACK-CONTOUR LOCATION FOR 

THREE-DIMENSIONAL PROBLEM WITH UNILATERAL CONSTRAINTS 

V. I. Kerchman UDC 539.3.01:539.375 

Extremal properties are established for the solution of the problem of cohesion- 
less normal-rupture crack formation: namely, that the true contour of a Christian- 
ovich crack corresponds to the maximum volume of the cavity. Examples of the ap- 
plication of this principle are considered. 

Mathematical Model of Christianovich Crackin an Elastic Body 

In an elastic space compressed at infinity by a uniform stress o, acting perpendicularly 
to the plane S : z = 0, forces symmetric with respect to S but in the opposite direction are 
applied, leading to the formation of normal rupture over a certain part of this plane of max- 
imum tensile stress (breakdown). If the effect of the cohesive forces of the material over 
the S plane may be neglected in comparison with the applied forces, the resulting check (slit) 
may be described using the Christianovich model [1-4], developed in the context of the mechan- 
ics problems of hot rocks (for an evaluation of the limits of applicability of this cohesion- 
less approximation to applied problems, see [5]). 

In formulating the problem, the scheme of [4] is followed. Suppose that two half spa- 
ces with identical elastic properties (which may vary over the depth) are pressed together 
by a uniformly distributed stress ~ = -o (Fig. i). Identical but opposite loads q(r) tend 
to break the contact between these half spaces (such loads acting on the contour of the de- 
veloping slit also result, as is known, from the above-mentioned volume forces disrupting 
the material [6, 7]). The displacements • w(r, o) of the contours of the plane slit develop- 
ing in the body, of unknown shape G o in plan, and the normal pressure on the half spaces 
composing the body p(r, ~) = -OzIS must satisfy on S conditions in the form of alternating 
equalities and inequalities 

p (r, o )  = q (r) - -  ~, w (r, ~) > 0,. r 6 0~, (1) 

p(r, ~ / 1 / q ( 0 - - ~ ,  w(r, ~ = 0 ,  r6S\G~.  

Here and below, in view of the symmetry, the conditions are written only for the upper 
half space; r = (x, y) is a point of S. There are no tangential stresses nor cohesive forces 
at S. The inequalities in the conditions of Eq. (i) (unilateral constraints) reflect the 
physically clear requirement of "nonoverlapping" of the slit edges and the absence of a re- 
sulting tensile stress on the continuation of the slit -- in the region of overlap of the 
half spaces (see also [8]). In the given formulation, this problem of the breakdo~ of an 
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